Induction of Antibodies with Long Variable Heavy Third Complementarity Determining Regions by Repetitive Boosting with AIDSVAX® B/E in RV144 Vaccinees


1Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States, 2US Military HIV Research Program, Rockville, MD, United States, 3AFRIMS, Bangkok, Thailand, 4Thai Ministry of Public Health, Nonthaburi, Thailand, 5Mahidol University, Bangkok, Thailand, 6Global Solutions for Infectious Diseases, South San Francisco, CA, United States, 7Boston University, Boston, MA, United States

Background: The Env gp120AE.A244 used for boosting in the ALVAC/AIDSVAX® B/E RV144 trial expressed a dominant V2 linear epitope centered on lysine (K) at position 169, and a subdominant peptide-glycan epitope recognized by V1V2 broad neutralizing antibodies (bnAbs) CH01 and PG9 and the unmutated ancestor antibody (Ab) of CH01. V2-specific Abs isolated from RV144 vaccinees displayed tier-1 strain-specific neutralization (AE.92TH023) and bound K169-containing linear epitopes. The RV305 trial recruited 90 RV144 participants to return after 6 years for two boosts with either ALVAC + AIDSVAX® B/E or AIDSVAX® B/E alone to evaluate the effect of this boost on vaccine-induced immunity.

Methods: B-cell repertoires of 4 RV305 vaccinees with the greatest breadth of serum neutralization (A3R5 assay) were studied by antigen-specific memory B-cell sorting and recombinant Ab generation. Two vaccinees received ALVAC + AIDSVAX® B/E and two were boosted with AIDSVAX® B/E protein in alum. PCR-amplified monoclonal Abs (mAbs) were characterized in binding, neutralization, and ADCC assays.

Results: The boosts increased VH mutation frequency from that seen following the initial RV144 vaccine regimen (RV305 mean 5.50%, 258 mAbs, 4 vaccinees; RV144 mean 2.60%, 105 mAbs, 12 vaccinees) and expanded a population of Abs with heavy third complementarity determining regions (HCDR3s) > 22 amino acids (RV305 30/258; RV144 1/105). Similar to V1V2 bnAbs- and other neutralizing Abs with long HCDR3s, these mAbs principally used D2/D3 and JH6. Moreover, 35.2% of mAbs were sensitive to PNGase F native deglycosylation of Env gp120AE.A244, including 9 mAbs with long HCDR3s. Four vaccine-induced N156QN160Q-sensitive V2 mAbs were isolated that are being characterized for neutralization capacity.

Conclusions: Repetitive boosting of RV144 vaccinees expanded a pool of Abs with many of the characteristics of V1V2 bnAbs. Expansion of this subdominant group of antibodies by vaccination may represent a step forward in the quest to induce bnAbs.